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We theoretically analyze some of the anomalies of the optical sum rules in the high-temperature supercon-
ductors. In particular, we address the particularly strong dependence on temperature of the sum rule in the
normal state. Both electron-electron correlations and the presence of a Van Hove singularity have been shown
to enhance such a dependence. Here, we consider both effects simultaneously by means of dynamical mean-
field theory for a two-dimensional Hubbard model with realistic parameters for different cuprates, and we find
that the two effects are not cooperative, as they appear to compete with one another in the region of parameters

relevant for the experiments.
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I. INTRODUCTION

The phenomenon of high-temperature superconductivity
in strongly correlated materials such as cuprates still repre-
sents one of the most challenging topic in condensed matter
physics 20 years after the discovery. A reason for the diffi-
culty in dealing with the cuprates is certainly the richness
and complexity of their phenomenology, which gives rise to
many competitive explanations, making it extremely hard to
identify the relevant physical processes underlying the out-
standing properties of these compounds. In this light, very
important information would be inferred extracting from the
whole body of experimental observations, the data measur-
ing general, and fundamental properties (e.g., thermody-
namic quantities and sum rules), focusing as much as pos-
sible on ubiquitous (material independent) aspects.

One important example, in the context of the infrared
spectroscopy experiments, is represented by the analysis of
the optical sum rule (SR).! A big effort has been devoted in
the last few years to the evaluation of the frequency integrals
of the optical conductivity o(w) in several cuprates (e.g.,
Bi,Sr,CaCu,0q,, (BSCCO),>> La,_Sr,CuO, (LSCO),°
YBa,Cu;0q,, (YBCO),”® and more recently also Hg-based
cuprates’) and to the study of their behavior as a function of
temperature and doping. One of the most general results
emerging from these studies is the strong temperature depen-
dence of the optical integral (or partial optical sum rule)
defineds

Q¢
W, (T.x) = f do o(w,T,x), (1)
_QC

where () is an upper cut-off, whose role will be discussed in
the following.

More in detail, leaving aside the behavior of the super-
conducting phase which establishes below the critical tem-
perature 7, where even the sign of the temperature variation
of W, depends on doping,* the main results of the infrared
estimate of the partial SR in the normal phase (7>T,) of the
cuprates are essentially two: (i) A strong enhancement of the
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W,,(T,x) is observed when T is reduced. Such enhancement
is generally quadratic in temperature and is not strongly dop-
ing dependent. (ii) The extrapolated spectral weight at T=0,
W,,(0,x) displays, instead, a clear doping dependence, in-
creasing monotonically with x. The qualitative results do not
depend significantly on the value of the cutoff ) and they
hold, in particular, when it reaches or even slightly exceeds
1 eV, where a minimum of o(w) is observed (e.g., Q¢
=10000 cm~!'~1.2 eV for BSCCO in Ref. 2, a value even
larger than the plasma frequency ), ~ 7000 cm™"). This case
is particularly relevant from the theoretical point of view
because such a cutoff selects the contribution of the lowest
conduction band, allowing for an effective one-band model
analysis.

In this work, we present a detailed study of the behavior
of the optical sum rule based on dynamical mean-field theory
(DMFT), a nonperturbative many-body approach which al-
lows for an accurate treatment of strong correlation effects,
which turn out to be crucial to account for the experimental
observations. We base our analysis on the previous work of
Ref. 10, which we extend by including realistic two-
dimensional band structures with Van Hove singularities.

The paper is organized as follows. In Sec. II, we discuss
previous results on noninteracting models and on the quali-
tative effect of correlations. Section III contains a brief in-
troduction to DMFT and our solution. Section IV is devoted
to the discussion of our DMFT results, while a simple inter-
pretation of the same results is presented in Sec. V. Section
VI is dedicated to concluding remarks.

II. NONINTERACTING MODELS

Most of the interest in the optical SR comes from its
relation with the kinetic energy.''"!?> The most straightfor-
ward identification is actually limited to tight-binding (TB)
models with nearest-neighbor hopping, where both in the
presence and in the absence of electron-electron interactions,
we have
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2 2

opt( T) Ekm(T) (2)

2V

where a is the lattice constant, V=a2 the cell volume, and
E};, the kinetic energy of the carriers. The relation holds if
the cutoff Q) is chosen large enough to contain the whole
optical spectrum. For a noninteracting system, this would
correspond to integrate up to the “plasma frequency” of the
model. We will see briefly that this identification can be sig-
nificantly modified by the inclusion of next-nearest (and fur-
ther) neighbor hopping.

Equation (2), connecting the SR to the Kinetic energy,
leads to a potential trivial explanation of point (i). The 7°
behavior can indeed be recovered through a simple Sommer-
feld expansion of Eq. (2), which gives indeed ngt
—WTB,(O) BT?, with WZBZ(O) ot and Bect™! [for a flat density
of states (DOS) of bandwidth W=8¢, e.g., B=e’>7/48t, see
Ref. 13].

On the other hand, as pointed out in Refs. 6, 10, and 13,
this one-parameter model cannot account simultaneously for
the experimentally measured values of W,,(7=0) and of B.
In particular, realistic hopping parameters are not compatible
with the size of the observed temperature variation of W,,,.
The experimental value of B could be recovered only invok-
ing a value of ~20 meV, smaller by more than 1 order of
magnitude than the values determined either theoretically by
means of band structure calculations,'* or experimentally
through photoemission measurements.'> The simple nearest-
neighbor noninteracting model appears even poorer when
considering the behavior of the zero temperature sum rule
(ii). First, the above mentioned value #~20 meV is totally
incompatible with the experimental values of W,,(0,x)
(which ranges from 200-500 meV). Second, the simple
model predicts W,,(0,x) decreasing with the doping level,
just opposite to the observations.

A first natural step to heal the inadequacy of the above
nearest-neighbor model is to include a more realistic band
structure. In particular, as we already mentioned, Eq. (2) is
valid only for pure nearest-neighbor hopping. When releas-
ing this restriction, the generalization of Eq. (2) reads

(Tx)= T > e

WTB
NkaU k>

opt —on (Ek) (3)
where the sum is performed over N, momenta k of the first
Brillouin zone, ¢ is the dispersion, and n,(¢) the occupa-
tion number for a given Kk state.

It has been pointed out in Ref. 16 that in the noninteract-
ing case, the inclusion of the next-nearest neighbor hopping
term ¢’ can determine remarkable changes in the above pic-
ture. More specifically, for realistic values of the hopping
parameters, remarkable differences between the kinetic en-
ergy and the optical integral behavior [defined in Eq. (3)]
appear, mainly for dopings close to the two-dimensional Van
Hove singularity (VHS): while the temperature dependence
of Ey;, is only weakly affected by the doping level, WZ,?: i
more sensitive to the VHS, whose proximity determines a
stronger temperature dependence. Although a stronger 7 de-
pendence of the spectral weight goes certainly in the direc-
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tion of the experimental evidence, many inconsistencies re-
main: First of all, the enhancement of the 7" dependence of
W:,lfl is still not enough to account for the experiments; sec-
ond, for some (and realistic) values of the hopping param-
eters, the results can even show a change of sign in the
temperature variation of W’2, which has never been ob-
served experimentally. Flnally, as already noted in Ref. 16,
the doping dependence of W. pt(O X) remains opposite to the
experimental data.

The failure of these simple noninteracting models to cap-
ture the experimental behavior cannot be surprising in light
of the unquestioned role of electronic correlations in the cu-
prates. In Ref. 10, we have shown that the inclusion of cor-
relations determines indeed a huge step ahead in the under-
standing of experimental data. A strong suggestion to
proceed in this direction comes also from point (ii) (see In-
troduction) because the monotonically increasing values of

W,,(0,x) would find a very natural explanation in a strongly
correlated scenario, where the electronic mobility is minimal
at half-filling and it increases with doping. In Ref. 10, it is
demonstrated how the presence of strong interactions can
actually determine a separation of the energy scales control-
ling W,,,,(0,x) and its temperature dependence. More specifi-
cally, if one performs the frequency integral of o(w) up to a
cutoff which includes both the Drude and the midinfrared
(MIR) contribution, mimicking the experimental situation, a
strong T dependence of W,,, and a qualitatively correct be-
havior of W,,(0,x) are obtained.

On the other hand, some discrepancy with the experimen-
tal observations is present also in the data of Ref. 10: the
DMEFT data, which are computed for a Hubbard model with
a semicircular dispersion which has no VHS, predict a stron-
ger temperature dependence of W,,(7,x) at small doping
than for the overdoped compounds, as a result of a larger
distance from the Mott transition, in contrast with experi-
ments, where this effect is not seen, and even an opposite
behavior occurs in BSCCO.** One of the reasons for such a
discrepancy is that DMFT neglects spatial correlations. The
effect of this neglect is expected to be stronger for smaller
dopings.!” A consequence of the lack of spatial correlation is
the vanishing quasiparticle renormalization factor Z (renor-
malization of the coherent electronic bandwidth) when x
— 0 in contrast with photoemission data, in which Z is finite
for any doping.

Thus, a crucial step for a proper analysis of the small
doping region is to consider cluster extensions of DMFT able
to capture at least short-range correlations (such as cellular
DMFT!® and dynamical cluster approximation'®), where the
Mott transition can take place with a finite Z. Present cluster
DMEFT studies have been mainly dedicated to the supercon-
ducting phase, which is not addressed in this paper.?%-?!

In this work, we do not address the cluster extensions of
DMFT, while we try to supplement our previous single-site
DMEFT analysis by including the effects of a more realistic
two-dimensional band structure displaying a VHS, which, as
we commented above, can introduce remarkable effects for
non interacting systems. Keeping in mind the limitations of
single-site DMFT, we will not consider extremely small dop-
ings, where nonlocal correlations will become crucial.
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We notice in passing that the 72 behavior of the SR is not
limited to noninteracting systems, but it is rather character-
istic of all Fermi-liquid systems, either weakly or strongly
correlated. The actual coefficient is generally a function of Z
and of the imaginary part of the self-energy (proportional to
77 in a Fermi liquid). What correlation effects and interaction
with bosonic modes can change are on one hand the actual
values of the 7=0 value and of the coefficient B, as we have
already found, and on the other hand, they can introduce
coherence scales which set the limit under which the system
behaves like a Fermi liquid. Beyond that scale, the tempera-
ture behavior can appear different from quadratic, but such a
deviation is not necessarily the consequence of deep changes
in the ground state properties.

III. DYNAMICAL MEAN-FIELD THEORY FOR THE
TWO-DIMENSIONAL HUBBARD MODEL

In this paper, we consider the two-dimensional Hubbard
model, i.e.,

4 1 1
H:E tijci'(rcj(r"_ UE (an - E)(”ll_ 5) —ME (an+nll),

ijo
(4)

where ¢, (cju) are annihilation (creation) operators for fer-
mions of spin ¢ on site i, nigzc;(,cig, and the sum in the first
term includes nearest-neighbors (NNs) and next-to-nearest
neighbor (NNN) hopping processes, whose amplitudes are
given by —f and ¢, respectively.

Our choice of the parameter appearing in Hamiltonian (4),
namely, ¢, ', U, aims to the closest contact with the cuprate
properties. Specifically, we concentrate on two of the most
studied cuprates, i.e., BSCCO and LSCO, for which a certain
agreement about the estimates of the hopping parameters has
been reached both on the theoretical (density-functional
theory calculations) and the experimental side (photoemis-
sion). In particular, for both BSCCO and LSCO, the NN
hopping parameter ¢ is estimated around 400 meV, while the
different crystal structure of their unit cells reflects in
different NNN hopping terms: local-density approximation
calculations predicts a t'=0.17¢t for LSCO (Ref. 14),
whereas larger values of ¢’ are estimated for BSCCO ¢’
=(0.25-0.30)z. Let us just note that, in the noninteracting
case, these values correspond a VHS located at lower energy
with respect to the half-filling chemical potential: In the case
of t'=0.17¢ (LSCO), the VHS would be crossed at a doping
level slightly below x=0.15, while for #'=0.307 (BSCCO),
the VHS would not be reached even for the higher doping
levels relevant for the cuprates, being located roughly at x
=0.29.

The choice of the value of the repulsive term U is cer-
tainly less obvious: Although the relevance of electron-
electron correlations is widely, if not universally, accepted as
a key element in the properties of the cuprates, it is difficult
to estimate precisely its value. In this paper, we have chosen
U=12t, consistently with Ref. 10, which allows for a direct
comparison with the results for the simpler semicircular
DOS used in that paper, and for a clear separation between
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the MIR and the Hubbard contributions in the optical sum
rule (see next section). More generally, the choice of U
=12¢ is also guided by experimental evidence from the neu-
tron scattering data in the cuprates, which estimate the anti-
ferromagnetic exchange J=41*/U~140 meV. A recent
DMFT analysis suggests, however, that a slightly smaller
value U=10¢ is more appropriate to describe the zero tem-
perature optical integral and their doping dependence.?

As we anticipated, we use DMFT to solve Hamiltonian
(4). DMFT is a nonperturbative method that maps a lattice
model onto an effective local model, in which the effect of
the neighboring sites on a given site is expressed through a
“dynamical Weiss field.” The local effective model can be
parameterized by an Anderson impurity model (AIM), in
which an interacting site is hybridized with a noninteracting
bath describing the Weiss field. For more details, we refer to
Ref. 23. The mean field is enforced by a self-consistency
condition which relates the Green’s function of the effective
model to the local component of the lattice Green’s function
of the original model. Namely,

1 1
-2 ,
Ng o—g+p—32(w)

G(w) = (5)

where G(w) and X (w) are the Green’s function and the self-
energy of the effective model and gy is the bare dispersion on
the chosen lattice (from now on, we are setting a,e=1). The
self-consistency condition requires to solve iteratively the
AIM until Eq. (5) is obeyed. In this work, we consider
the two-dimensional dispersion &,=-2¢(cos k,+cos k)
+4t'(cos k, cos k), while in Ref. 10, we considered a simple
semicircular density of states characteristic of an infinite co-
ordination Bethe lattice. We emphasize that the lattice struc-
ture enters the DMFT only in the self-consistency condition.

We use exact diagonalization to solve the AIM. In this
method, the model can be solved at zero temperature by
discretizing the bath function into a small number of levels,
which here will be N,=7. The main limitation of the ap-
proach is that the spectral properties are those of a finite
system; hence, the fine details cannot be resolved with great
accuracy. This choice is particularly useful for the subject of
this work, considering that we are interested in integrated
optical spectra, rather than in their details, and that the
temperatures of interest are very small with respect to the
energy scales of Hamiltonian (4) (the range of temperature
0<T<300 K corresponds to 0<<7T<0.0651).

In particular, the very low temperature range allows us to
exploit the Lanczos algorithm at finite 7, which has been
developed for DMFT in Ref. 24. In this scheme, we avoid to
compute the whole spectrum of the Hamiltonian, limiting to
the relevant low-lying states, allowing for a faster calculation
than the full diagonalization of the matrix.

IV. DYNAMICAL MEAN-FIELD THEORY RESULTS:
SPECTRA AND OPTICAL CONDUCTIVITY

As discussed in Ref. 10 and in several precedent works,
the interpretation of the optical spectra in DMFT can be
greatly helped by an inspection of the single-particle spectral
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FIG. 1. Interacting density of states N(w) computed via DMFT
at low temperature (7=0.02¢) for the case of BSCCO (¢’ =0.3r) and
LSCO (¢'=0.17r) for two different values of doping. Note the pres-
ence of a narrow QP at the Fermi level, very close to the lower
Hubbard band, while the upper Hubbard band is clearly visible at
w=U=12t.

function. In particular, the k-integrated spectral function,
namely, the interacting density of states, can be easily com-
puted through the knowledge of the retarded self-energy
3,,.(w) on the real axis,

11
——E Im

WNkk

1
w+ u-= Ek_zret(w) -

N(w) =- (6)

In Fig. 1, we plot N(w) for T=0.02¢, the smallest tempera-
ture we considered for two doping levels and for parameters
corresponding to the two different materials. Quite generally,
the evolution of the density of states is analogous to the
Bethe lattice case and contains three features: (i) a strongly
renormalized quasiparticle peak (QP) at the Fermi level (of
width W=ZW, where Z=[1-d3(w)/dw] " is the quasiparti-
cle residue), which is basically attached to (ii) the lower
Hubbard band (of width roughly equal to the bare bandwidth
81), and well separated from the upper Hubbard band, whose
center is located at w~ U=12¢, again with width close to 8.
The weight of the QP clearly increases with the doping level,
while the spectral gap between the QP and the Hubbard
bands appears rather stable in the range of doping considered
(being of order of 67—8t). The effect of ¢’ is hardly visible in
N(w) and seems to affect mainly the shape of the QP, as can
be seen by comparing the results for the two values of '
corresponding to BSCCO and LSCO.

Information about the spectral function is particularly use-
ful to understand optical spectra due to the simplifications
introduced by DMFT in this regard. The locality of X (w) and
of the two-particle irreducible vertices in DMFT, together
with the odd symmetry of the current operator for k — -k,
determine in fact the vanishing of all the vertex corrections
to the current-current paramagnetic kernel.”> As a conse-
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FIG. 2. (Color online) Optical conductivity o(w) computed via
DMFT at low temperature (7=0.02¢) for the same parameters of
Fig. 1. One can immediately notice the narrow Drude peak at low
frequency, a broader MIR contribution at w~4¢, and a small Hub-
bard term at higher frequencies.

quence, o(w) can be computed via the simple “bubble,”

o(w)= 'nl4N > vi dvIm G,,(&,v)Im G, (&, o+ v)
kK
S = fv+ o) 7)

w

where vi=(§—2)2, Gol€, 0)=[w+u—e~2,.(w)]" is the
retarded Green function, and finally f(w)=(e“”+1)"! the
Fermi function. For the sake of simplicity, the normalization
of Eq. (7) has been chosen so that W, is approaching di-
rectly the value of 2/ NkEkJ%ng(ek) for Q— 00,

Examples of the DMFT results for o(w) are shown in Fig.
2 for the same set of parameters of the DOS of Fig. 1. One
can immediately recognize how the main features of N(w)
discussed above reflect in o(w). Similar to the results of Ref.
10, the optical conductivity displays (i) a clear Drude peak at
low frequencies (w<ZW), determined by optical transitions
occurring at energies within the QP width, then (ii) a MIR
bump at w~ W/2, related to transitions between the QP and
the lower Hubbard band, and finally a high energy contribu-
tion at w~ U, which is related to transitions involving the
upper Hubbard band.

The rather neat separation between the low energy fea-
tures (Drude and MIR) and the higher energy Hubbard con-
tribution suggests a value of ().~ 67—8t as a natural cutoff to
compare (see next section) our calculations with the experi-
mental data. This choice has the same spirit of choosing a
cutoff that “corresponds to a minimum of o(w),”” in order to
select only the contribution from the lowest absorption band.
Yet, for our choice of parameters, the cutoff we use is
roughly two times larger than in the experiments (e.g., with
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FIG. 3. (Color online) Optical integral with a cutoff Q=8¢
(W, including Drude and MIR contributions) and Qc=% (total
SR) computed in DMFT at 7=0 as a function of doping for the
cases of BSCCO and LSCO.

t=400 meV, Q.=6¢-8¢t=19 000-26 000 cm™! to compare
with ,=10000 cm™! of Ref. 2). On the other hand, using
the experimental values in our calculations would result in
including only a part of the MIR in the integral, making the
analysis less significant, at least in our view.

V. DYNAMICAL MEAN-FIELD THEORY RESULTS:
OPTICAL SUM RULES

In this section, we analyze the results for the optical spec-
tral weight W,,, of the Hubbard model through direct nu-
merical integration of the optical conductivity using a cutoff
8¢ in Eq. (1). From a theoretical point of view, it is also
interesting to compare W,,, with the total SR (including in
this case also the Hubbard contributions), given by Eq. (3),
where ny (g)=—1/7[dwIm G(¢, w).

Even if our focus is the dependence on temperature of
these two quantities, a brief analysis of the 7=0 behavior is
necessary before moving to finite temperature. In Fig. 3, we
report the extrapolated 7=0 values for W,,, and SR for three
different doping levels for the set of hopping parameters
which refer to BSCCO and LSCO. Both quantities increase
as a function of doping, analogously to the Bethe lattice case.
In this respect, as one could have expected, considering a
more realistic band structure dispersion reflects at most in
minor corrections of the DMFT results of Ref. 10 and in
minor differences between the two compounds. This clearly
shows that the strong correlation effects play the dominant
role in determining the values of both W,,(7T=0) and SR(T
=0), regardless the shape of the non interacting bands. We
notice that, apart from the natural difference (which ranges
from 80 to 40 meV) due to the contribution of the Hubbard
bands, the doping behavior of W,,(T=0) roughly tracks that
of SR(T=0) since for the doping considered the magnitude
of the frequency integral in the SR is mostly determined by
the MIR and the Drude contributions.

We turn now to the temperature dependence of the spec-
tral weight. The results of the DMFT calculations are re-

PHYSICAL REVIEW B 77, 014518 (2008)

e ~
% g
z 5
3 5
: ;
2
1 1
5 099 F 1 —x
3 S 099}
g 0.98 i
£ o7} E .
g E0%8F o120
2 096 LSCO ¥=0.19 &
x=0.26 X
0.95 L— 1 097 L— ]
10000 40000 10000 40000
72 (K} 72 (K

FIG. 4. (Color online) Temperature dependence of W, (left
column) and of the total SR (right column) normalized to their T
=0 values for BSCCO (first row) and LSCO (second row). The
solid lines are the results of the quadratic fit at low temperatures
(see text).

ported in Fig. 4, where the ratio between the value of W,,(T)
(and the SR) and its corresponding T=0 extrapolation for the
case of BSCCO and LSCO at x=0.12, 0.19, and 0.26 are
shown as a function of temperature.

We see immediately that for both BSCCO and LSCO, the
relative variation W,,(T)/W,,(0) between T=0 and room
temperature (in our units 7=300 K corresponds to 0.0651) is
larger for the underdoped compounds and constantly de-
creasing with doping. For the case of BSCCO, such trend is
more pronounced than in the Bethe lattice case!® and it is
only partly due to the doping dependence of W,,,(0): A more
quantitative analysis through a quadratic fit [W(T)=W,
—BT?, solid lines in Fig. 4] of the data at low temperatures
clearly demonstrates that the main contribution to this results
stems from a remarkable reduction of the coefficient B,
which controls the low-T behavior. For instance, in the case
of BSCCO, B=21 eV~ at x=0.12, and it decreases down to
3 eV at x=0.26. In the case of LSCO, the temperature
variation at x=0.19 is very close to that at x=0.26 because B
has a minimum for doping slightly below the VHS.

A second important observation is in order about the tem-
perature dependence of the sum rule. With the only exception
of overdoped LSCO, in the parameter region considered
here, the temperature variation of W,,(7)/W,,(T=0) is al-
ways bigger than that of SR(7)/SR(T=0) (for BSCCO by
more than a factor 2): This results is therefore not determined
simply by the small difference between W,,(T=0) and
SR(T=0): The coefficient of the quadratic fit is always lower
in the case of the SR indicating that the temperature depen-
dence of the high energy Hubbard contribution has the op-
posite sign with respect to that of W,,,,. This should be taken
into account when comparing theoretical prediction on the
spectral weight computed in presence of strong interactions
with the experimental data. This problem can be faced, e.g.,
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in cluster DMFT, where the difficulty to evaluate the vertex
corrections may suggest to resort to the calculation of the
total SR.

The main outcome of these DMFT results is that in pres-
ence of a strong correlation, the effects of the details of more
realistic band structure are not very evident in the behavior
of the integrated optical spectral weight. As one clearly sees
in Figs. 3 and 4, the behavior of W,,,(T=0) and of its depen-
dence on temperature when the doping level is enhanced
from x=0.12 to x=0.26 is dominated by the quasiparticle
renormalization factor Z which obviously increases with the
distance from the Mott transition. In this respect, our DMFT
results show that most of the peculiar trends determined by
the two-dimensional density of states in a simple noninter-
acting scheme!® are washed out by strong interaction effects,
so that the main outcomes of Ref. 10 remain unaltered.

Nonetheless, we observe some effects of the more realis-
tic band structure also in the presence of strong correlation,
and the outcome is not completely obvious. In particular, one
could have expected that, when the chemical potential moves
close to a VHS, the largest temperature variation of W,,
would have be achieved because the proximity to the VHS
and the strong interaction could have cooperated and
summed up somehow their effects in making more pro-
nounced the 7 dependence of W,,,. This is apparently not the
case since the VHS is reached at a doping level slightly
below x=0.15 for LSCO and larger than x=0.26 for BSCCO,
and no trace of any enhancement in the 7" dependence of the
spectral weight is found there. Quite remarkably, instead, one
can observe that in BSCCO, the weakening of the T depen-
dence of W,,, with increasing doping is more evident than in
the Bethe lattice case'® (where no VHS is present), and that
in LSCO the change of the temperature variation for doping
levels below the VHS (i.e., x=0.19 and x=0.26) is smaller
than expected. This clearly suggest that the proximity to a
VHS and the strong interaction effects are partially competi-
tive. It is worth underlining that no evidence of the change of
sign of the temperature variation when the chemical potential
crosses the VHS is found in the LSCO data for x=0.19 and
0.26 as opposed to the noninteracting case studied in Ref. 16.

An extremely simple scheme to understand the origin of
these partly unexpected DMFT results will be discussed in
the next section.

VI. RESCALED TEMPERATURE DEPENDENCE: A
STRONGLY RENORMALIZED FERMI-LIQUID PICTURE

In this section, we will present a simple explanation of the
surprising interplay between VHS and strong correlations
displayed in DMFT. As we discuss below, the main idea
behind our explanation is to introduce a simple cartoon for
the correlated system, where the SR is given by the value
obtained for a noninteracting case with bands renormalized
by the factor Z obtained in DMFT. The starting point of our
arguments is the temperature dependence of the total SR at
U=0, which was already analyzed in Ref. 16, and it is shown
in Fig. 5 for the band structure parameter considered here
and different doping levels.

It is worth noticing that, as it was pointed out in Ref. 16,
the low temperature behavior (which can be obtained also
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FIG. 5. (Color online) Temperature dependence of the SR (nor-
malized to its 7=0 value) for a noninteracting system with hopping
parameters of BSCCO (left) and LSCO (right) at different doping
levels.

directly via the Sommerfeld expansion) displays remarkable
changes for density close to the VHS. In particular, defining
Xyys as the doping corresponding to the chemical potential at
the VHS (i.e., u=-4t"), when x approaches xy; from below
one observes a strong enhancement of the slope of the SR(7)
at low T, while as soon as x> xyq (€.g., x=0.30 for BSCCO
and x=0.15 for LSCO), the sign of the slope changes
abruptly to positive, in contrast to natural expectation (and
experimental evidence), before changing again sign for
higher doping levels.

One should also note that, as a consequence of the big and
rapid changes occurring close to the VHS, the temperature
behavior of SR can deviate rather remarkably from the stan-
dard T? behavior d la Sommerfeld.

As we mentioned in the previous section, however, most
of these VHS effects, clearly visible in the noninteracting
case, are quite weakened (and, in some cases, they even dis-
appear) in our DMFT results, as a consequence of the strong
correlation. To understand the reason for this effect, we ob-
serve that in the noninteracting systems, the anomalous be-
havior of the SR due to the VHS is always limited to a small
temperature range, whose size becomes smaller and smaller
as the VHS is approached. If we consider that in the presence
of the strong interaction, the low temperature physics should
be mainly controlled by the strongly renormalized QP at the
Fermi level (see again the DOS reported in Fig. 1), one can
reasonably expect that correlations determine a reduction (by
a factor Z) of the size of the low temperature region which is
controlled by the VHS. In particular, if the QP is strongly
renormalized, as in the case we have considered here (the Z
evaluated in DMFT ranges between 0.10 for BSCCO at x
=0.12 and 0.25 for LSCO at x=0.26), the effects of the VHS
should be limited to temperatures so low to become hardly
visible in the experiments and in the temperature range we
considered in our DMFT results.

We can try to test this generic idea mimicking the strongly
interacting Fermi-liquid physics by simply rescaling by a
factor Z the energy scale of the noninteracting system.
More precisely, the renormalization of the QP peak deter-
mines a renormalization of the coefficient B of the 7% term
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FIG. 6. (Color online) We show the same data for SR(7)/SR(0)
for the noninteracting system presented in Fig. 5 rescaling the tem-
perature according to the value of the quasiparticle residue Z using
T—T/\Z (see text). Z is given by the DMFT calculations for the
interacting model at the different dopings.

(B— ~ By/Z because B has the dimensions of the inverse of
an energy), this means that the scaled results can be simply
obtained by replotting the data of Fig. 5 rescaling the T de-
pendence of the SR for a given doping level, with the square
root of Z extracted from DMFT (i.e., T— T/ v‘?).

The results of such rescaling are shown in Fig. 6. Even at
first glance, one can notice that the peculiar features associ-
ated to the VHS are much less evident now, and that the
rescaled data resemble in many respects the outcome of the
full DMFT calculation. More specifically, the slope of SR(7)
does not change sign but in a very low temperature regime,
with the exception of the BSCCO at x=0.30, which is, how-
ever, above the doping regime of our interest. The same con-
sideration applies to the increasing of the slope, which is
observed for x — xyyg in the noninteracting case, and which
is now limited to a very tiny low temperature regime. These
results explain why, in the presence of a strong correlation,
the effect of the VHS is not only small, but even opposite to
what one can expect from a Sommerfeld expansion at U=0:
the deviation from the low-7T “Sommerfeld” regime occurs
really at very low T, partly reducing the effect of the QP
renormalization on the overall variation of SR between T
=0 and 7=300 K. As a second point, one can note that, apart
small deviations, the low temperature behavior of the sum
rule can be considered to first approximation quadratic, in
agreement with DMFT calculations and with most of the
experimental measurements. One should also remark that,
after the rescaling, the size of the temperature variation of
the SR becomes much closer (some percent going from T
=0 to T=300 K) to that of the DMFT data and the experi-
mental observations, while even at the dopings closer to the
VHS the overall relative variation of SR does not exceed
0.5%.
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Although one cannot expect this oversimplified analysis
to reproduce exactly all the DMFT results (e.g., it would
predict a slightly smaller temperature variation with respect
to DMFT for LSCO), it sheds light on the essence of the
physics which determines the sum rule behavior in the pres-
ence of strong correlation. More precisely, it indicates rather
clearly that the main features of the integrated optical spectra
are determined by the physics of a strongly renormalized
Fermi liquid, and the effects of the two-dimensional band
structure are generally small.

VII. CONCLUSIONS

In this paper, we presented a DMFT study of the optical
sum rules of the two-dimensional Hubbard model, aiming to
understand the interplay of the strong electron-electron cor-
relations and the properties of the two-dimensional density
of states, namely, the Van Hove singularity. Even if both
correlations'® and the VHS singularity'® can in principle ac-
count for a large temperature dependence of the optical spec-
tral weight, the two effects are found not to be cooperative.
Our DMFT analysis shows that correlations actually reduce
the effect of the VHS on the optical sum rules. The mecha-
nism underlying this reduced effect is a shrinking of the tem-
perature scale below which the effects of the VHS are appre-
ciable. When correlations are strong (namely in doped
cuprates), this effective temperature scale becomes lower
than the temperatures accessed in the experiments.

This means that the inclusion of a more realistic band
structure cannot alter the conclusions of Ref. 10 about the
necessity of considering strong correlations to get the correct
order of magnitude of observed T dependence of the optical
spectral weight in the cuprates (as well as the doping depen-
dence of its T=0 extrapolation). At the same time, our results
imply that the almost negligible doping dependence of the
temperature variation of W,,,(7) which has been clearly ob-
served in several experiments cannot be explained within a
pure DMFT calculation, even including the effects of a more
realistic band structure.

In this respect, nonlocal corrections beyond the DMFT
level certainly play a role since they can introduce different
renormalizations for the hopping parameters and the QP
weight, and the physics of the Mott transition can become
richer, including, for example, pseudogap features at low
temperatures. The inclusion of such nonlocal effects cer-
tainly represent an interesting challenge for future studies.
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